
102Emergent Models of Architectural Education: Pedagogy, Curriculum + Students An Open-Source Paradigm

An Open-Source Paradigm in the
Responsive Architecture Studio

OPEN SOURCE AND ARCHITECTURE
Open source is a popularized term and concept associated with the notion of par-
ticipatory culture. Originated in software programming, the aspects of democ-
ratizing production have been broadened to a variety of contexts such as open
source culture, open source hardware, open content, and related concepts such
as creative commons, and participatory culture. Open content creation including
knowledge production such as Wikipedia, or artistic work by amateurs or profes-
sionals such as Flickr, YouTube, etc., biotechnology (e.g., BioBricks Foundation),
electronics, design and education (Cheliotis 2009; Ceraso and Pruchnic 2011;
Hope 2008; Voyce 2011) are just a few examples. Open source is also associated
with leveraging voluntary labor in the form of crowdsourcing to outsource por-
tions of a larger task to an indefinite group of volunteers, or ‘prosumption’ to
involve consumers in the production of good and service such as usability, beta
testing, and citizen journalism of nonprofessionals’ contribution to covering news
events, and participatory and social media (Ceraso and Pruchnic 2011).

Jenkins et al. (2006) discuss a 2005 study conducted by the Pew Internet and
American Life project (Lenhardt & Madden, 2005). According to this study more
than one-half of all American teens—and 57 percent of teens who use the
Internet—could be considered media creators who created a blog or webpage,
posted original artwork, photography, stories or videos online or remixed online
content into their own new creations. One-third of teens share what they create
online with others, 22 percent have their own websites, 19 percent have blogs,
and 19 percent remix online content (Jenkins et al. 2006). A major shift toward
the decentralization of knowledge changes both the perception of who produces
content and who possess authoritative view on content.

Aspects of the open source paradigm and participatory culture have drawn
parallel speculations in architecture. Ratti et al. (2011) propose open source

SUSAN FROSTEN

Philadelphia University

KIHONG KU

Philadelphia University

JONATHAN GRINHAM

Harvard University

In the last decade, rich participatory open-source communities, and open-

source hardware and software, have emerged with resulting opportunities

for change in architectural education. We discuss a pedagogical approach for

responsive architecture, involving open source content, first-hand design experi-

ences , and teaching experiences in architectural studio.

103 OPEN CITIES: The New Post-Industrial World Order

architecture (OSArc) as an emerging paradigm which implies an inclusive pro-
cess through collaborative use of design software and transparent operation
throughout the life cycle of design, construction, and operation of buildings,
infrastructures and spaces. Accordingly OSArc includes (1) new funding models
of crowd-funding strategies (e.g., Kickstarter, Sponsume), offering mass owner-
ship appealing to squatters, refugees; (2) inclusive forms of engagement through
crowd-funding seen as a spatial version of Hacktivism, which may suffer draw-
backs such as project bifurcation, abandonment, incompatibility with existing
buildings ; (3) common, open, modular standards for hardware compatibility,
networks of knowledge, ideas, and remote collaboration; (4) design for mass cus-
tomization through parametric tools, open source codes and scripts, BIM, rapid
prototyping and 3D printing technologies involving laypeople as decision-making
agents, sharing information, and optimizing production; (5) construction with
open source hardware for kinetic or smart environments integrating software,
hardware, mechanisms, with embedded sensing and computing within the ‘inter-
net of things’; and (6) networked real-time monitoring and system feedback for
personalization during maintenance and operation. Taking into account user- and
environmentally-responsive mechanisms, Haque (2002) argues that OSArc is a
participatory spatial operating system that allows participants to design and re-
appropriate their own spaces and share design problems to build social space.

RESPONSIVE ARCHITECTURE
As open source architecture suggests, responsive architecture is an interac-
tion systems within which users create their own programs. Advancements in
robotics technology combined with the demand for smart, sustainable and user
friendly environments have drawn attention towards kinetic and responsive
architecture. A number of precedents illustrate embedded intelligence and new
tectonic opportunities that offer spatial qualities of adaptable physical environ-
ments supported by digital technologies.

Several architectural researchers and designers have examined the aesthetics of
such architectural kinetics and proposed taxonomies and design methodologies
for this emerging paradigm. Moloney (2011) offers a framework for architectural
facades based on analytical diagrams and time-lapse images of dynamic and ani-
mated surfaces. This kinetic paradigm suggests a shift from designing a final static
product to an adaptable and interactive process. Thus the traditional role of archi-
tects as spatial consultants requires adopting complex subassemblies of dynamic
systems which integrate product design, computer science, engineering, mechanical
and electrical engineering, behavior sciences and material sciences, and other fields.

The multidisciplinary aspects of this emerging domain are easily recognized by
the variety of relevant terms used in research and practice: ubiquitous comput-
ing, pervasive computing, interactive architecture, responsive architecture, kinetic
architecture (Zuk 1970), transformable design (http://www.hoberman.com/) and
architectural robotics (Green and Gross 2012). Fox and Kemp (2009) survey the land-
scape of interactive architecture approaches driven by practical needs such as envi-
ronmental sustainability, aging, changing lifestyle patterns, new sensual experiences
and implications. These developments build on the advancements in building tech-
nology and embedded technology (e.g., microprocessors, sensors, actuators, etc.)
which acknowledge the reality and demand for pervasive computing (McCullough
2002). New typologies in architecture offer possibilities for new information spaces
that integrate both the physical and virtual spaces (Ku and Grinham 2013).

104Emergent Models of Architectural Education: Pedagogy, Curriculum + Students An Open-Source Paradigm

Figure 1 shows the key domain knowledge areas that contribute to this design
process. Architectural design, robotics, and interaction design, contribute to this
interdisciplinary field of responsive architecture. It is necessary to understand
how the complex relationships of algorithmic logic, simulation, physical prototyp-
ing, robotics implementations, etc. impact tectonic possibilities, what design tools
are adequate, and how knowledge boundaries become increasingly assimilated
into the architectural domain. It became obvious through our own design explo-
rations that open source culture and the internet is an important driver pushing
technology, design, and dissemination of responsive architecture forward.

OPEN SOURCE SOFTWARE
In 2001 Ben Fry and Casey Reas released Processing, a programming language and
development environment for the visual arts. Fry and Reas developed the program-
ming software while at MIT’s Media Lab under the direction of John Maeda. The
programming software uses the graphic capacity of Java programming with simpli-
fied and new features geared toward students, artists and design professionals. The
importance of Processing is not necessarily that it is an easy to use and powerful
programming language developed specifically for the visual arts (it is), but rather,
that it is an open source software platform. Processing itself is the result of other
open source software that provided guidance and components for Processing (Reas
& Fry 2007). When it was released, Processing also unveiled the framework for a
collaborative community. When the software launched, it brought with it a network
geared toward creating a community of connected users and producers. This online
community included tutorials, code banks, forums and ‘wiki’ pages where like-
minded programmers of all skill levels could come together and share ideas, codes
and continue to develop the Processing environment. Fry and Reas describe the
Processing website as a ‘communication hub’ and describe other Processing-based
websites’ willingness to share source codes. Jared Tarbell of Complexification.net
states, “opening one’s code is a beneficial practice for both the programmer and the
community. I appreciate modifications and extensions of these algorithms.” (Reas &
Fry, 2007). This willingness to share provides rich soil for learning. Designers seeking
to learn Processing are not required to create immediately, nor do they need to seek
out a centralized learning point. Rather, they can begin were others have left off,
learn from their peers and build upon them. Open source software like Processing

Figure 1: Core domains of responsive architecture.

1

105 OPEN CITIES: The New Post-Industrial World Order

provides the necessary framework for a participatory culture. This framework
is described by Elinor Ostrom’s ‘Mechanisms of Joint Governance of Commonly
Accessible Resources.’ Simply stated, by providing a free good that allows users
themselves to access the source code, open source software produces a low hurdle
for participation. Users are motivated to use the free code and make changes where
the code is weak or to develop functions further. Because it is free, subsequent ver-
sions or refinement of code are markedly unsustainable for private sale (Shirky,
2010). Nowhere is this better explained then through the development of Arduino.

OPEN SOURCE HARDWARE
Processing, through an open source licensing, gave birth to two new platforms:
Wiring in 2003 and Arduino in 2005. Both platforms were designed for artists to learn
how to program microcontrollers—small computers with a single, integrated circuit
containing a processor core, memory and programmable input/output peripherals.
These platforms are an example of the means by which we see a re-emergence of
responsive architecture (We have chosen to focus on Arduino due to its popularity
in academic communities including the Architecture Association in London, UCLA’s
undergraduates in the Design | Media Arts program and New York University’s
graduate ITP program—all of which have produced valuable online communities
that have contributed to this study.) Massimo Banzi and David Cuartielles founded
Arduino in 2005 seeking to develop an open source, inexpensive prototyping sys-
tem based on the processing language. Much like Processing, Arduino launched with
an online community where users can contribute to, and borrow from, their peers.
Arduino provided a platform for development that paired Do-It-Your-Selfers (DIY)
with academics and professionals around the world. The Arduino integrated devel-
opment environment’s (IDE) ease of use, popularity, and access to the Atmel AVR
microprocessor has also birthed more than a half-dozen Arduino-based microcon-
trollers, including, Lillypad, Microduino, Fabduino, and Printo, to name a few.

These networks also provide a secondary aspect of open source software, known
as ‘off-the-shelf ’ hardware. The use of ‘off-the-shelf ’ hardware and circuits
offers a similar framework to the use of open source software. In this case, the
hardware is front-loaded with information. The use of ‘off-the-shelf’ hardware
ensures consistency of products, specifications and results. More importantly,
like Processing, Wiring and Arduino, the suppliers of ‘off-the-shelf’ hardware
have produced information-rich online participatory cultures. Vendors such as,
Sparkfun.com, Adafruit.com, Robotshop.com and Allelectronics.com provide
their consumers with outlets to become information producers. Product pages
provide areas for product reviews and forums where consumers can find valu-
able codes, circuits diagram and links to experiments using the specific products.
Sites like Sparkfun.com also include tutorials by staff members and customers.
Programs such as Fritzing, an open source platform, allow users to design circuits
through computer software that includes libraries of ‘off the shelf’ hardware.
Users can import parts, design and share their project through Fritzing.

 A PEDAGOGICAL FRAMEWORK
Acknowledging the potential of open source architecture in responsive architec-
ture, our study explored the following pedagogical questions:

• How is architectural education changing due to these innovations?

• What are the related research skills and information literacy requirements
for students?

106Emergent Models of Architectural Education: Pedagogy, Curriculum + Students An Open-Source Paradigm

• What are the opportunities and challenges for architectural education?

To answer these questions, we investigated design research along three prongs:

• Review and mapping of open-source content of digital design

• First-hand experiments with open-source hardware and software by the
authors on responsive architecture design projects

• Responsive design studio course development

Our explorations in responsive architecture are based on a framework involving
systematic steps of defining a theme, defining design goals and developing inter-
active scenarios, designing and prototyping, and finally specifying requirements
for full scale implementations (Figure 2).

Thematic explorations have involved kinetic installations which facilitate interac-
tion between users or interaction with users, responsive structures and building
skins that respond to environmental conditions such as lighting, sound, tempera-
ture, etc., and smart spatial interfaces that bridge physical and virtual spaces and
offer connectivity between users or sensors and actuators. Within these themes,
design goals and user experience and interaction scenarios are developed to estab-
lish user needs and system requirements. This stage involves defining and envi-
sioning scenarios through user studies, story boarding, renderings, animations,
and collages. Based on the outcomes, design and specifications are developed and
these will be used to evaluate the success of the project outcomes during proto-
typing studies and full scale implementations. Simulations through the use of ren-
derings, virtual prototyping via software (e.g., Processing, Rhino 3D, Grasshopper,
etc.) are utilized to study design options. The prototyping phase involves develop-
ment of interactive mock-ups that utilize open source hardware and software and
techniques of rapid prototyping and digital fabrication. The final phase involves
scaling up the prototype and may end at considering plans and implications of
such developments because of practical and funding constraints, with the intent to
allow future development if interested parties can be attracted and involved. Thus
potential outputs may establish performance parameters, constraints, specifica-
tions and plans for future implementations, or result in full scale implementations.

As we see in the design process diagram, the development process of responsive
architecture demands multidisciplinary understanding and foundational skills in
architectural design, interaction design, and physical computing and simulation.
Developing the required multidisciplinary knowledge in these areas is one of the
challenges in the architectural design curriculum.

2

Figure 2: Framework of responsive architecture

design process.

107 OPEN CITIES: The New Post-Industrial World Order

OPEN SOURCE PLATFORMS FOR DESIGN AND PROTOTYPING
For prototyping purposes, one of the open source hardware platforms chosen by
the authors and used for design and teaching is the Arduino microcontroller. In par-
allel, Processing is the open source software interface utilized to directly control
or interface with the Arduino. Both platforms are compatible with each other and
offer convenient connectivity via serial connections (USB cable) through the com-
puter. In addition to Processing, Firefly—a Rhino/Grasshopper visual programming
interface provides connectivity to Arduino. The Arduino offers a flexible platform
to extend real-time data or stored data from inputs such as various sensors, or
data streams channeled through the computer (e.g., camera, Kinect) or data from
the internet. The Arduino microcontroller processes the data based on algorithms
that are custom programmed by the user to generate various forms of actuations
such as real-time visualizations via Processing, or physical actuators (LED, motor,
speaker, etc.) or via the internet to other computers or microcontrollers (Figure 3).

OPEN SOURCE COMMUNITIES RELEVANT TO COMPUTATIONAL DESIGN
The incredible growth of online communities within the architecture and design
practices, evidence the broad user base of various software and hardware tools
some of which are commercial tools and other open source tools. We conducted
a review of a few selected websites (Table 1). The review included online commu-
nities for open information and knowledge sharing, personal blogs, electronics
suppliers and professional service providers. Within the category of online com-
munities, based on the user types, four categories were observed: (1) developer-
user communities which were initiated by developers and then opened to broad
user bases; (2) user communities initiated by users to share ideas, information
among users; (3) commercial provider initiated communities which combine user
communities with commercial publication channels; and (4) academic classroom
spaces which share classroom content with the larger online community. These
communities share knowledge, information, through tutorials or user forums and
downloadable code (e.g. processing, Arduino, etc.), 3D geometric specific families
(e.g., RevitCity), and others share also job postings and relevant news articles.

Figure 3: Input-Process-Output interface diagram

based on the Arduino platform.

3

108Emergent Models of Architectural Education: Pedagogy, Curriculum + Students An Open-Source Paradigm

Some of the key features of vibrant communities include interactive content,
membership rankings based on user contribution. For example, RevitCity’s use
of a membership-based community highlights an important motivation for user
generated content within online communities. Social motivations reinforce the
personal motivations and new communications networks encourage member-
ship and sharing, providing support for autonomy and competence (Shirky 2010).
The use of membership provides a rich intrinsic motivation for sharing, and the
membership approach to problem solving produces a shifting from, ‘I did it’ to
‘we did it’, resulting in direct social feedback and a sense of connectedness. In

Category Name Components Participant Type
Online communities Processing.org Download

Examples
Tutorials
References
Forum/Support
Shop/Buy

Open source software
developer-user community

Openprocessing.org Examples
Course examples
Collections
Shop/Buy

Open source design share-
user community

Arduino.org Download
Shop/Buy
Tutorial
Examples
References
Support/Forum
Blog

Open source hardware
developer-user community

RevitCity.com Forum
Downloads
Gallery
New/Articles
Resources
Jobs
FAQ

Commercial software user
community

Designreform.net
Designbymany.com
Case Consulting

Publication/tutorials
Community
Consulting

Commercial training
provider on various tools

Instructables.com Explore
Create
Contests
Forums

DIY user community

 http://www.wikispaces.com/ Online classrooms Academic classrooms
Blog http://shiffman.net/ Books

Teaching
Blog
Download

Educational provider on
open source tools

http://www.jeremyblum.com/ Blog
Tutorials/Books
Portfolio examples

Educational provider on
various software/hardware
tools

http://www.plethora-project.com/ Video tutorials
Portfolio examples
Blog
Code library

Educational provider on
various design tools

Training provider http://lab.modecollective.nu/ Online tutorials
Workshop arrangements

Commercial training
provider on various tools

http://www.fabfoundation.org/fab-
labs/what-is-a-fab-lab/

Technical prototyping platform
Knowledge sharing network

Digital fabrication and
computation platform

Material vendors https://www.sparkfun.com/ Products
Blog
Tutorials
Videos
Classes
Support

Commercial electronics
supplier with tutorials and
user discussion board and
support

http://www.adafruit.com/ Shop
Blog
Learn
Forum

Commercial electronics
supplier with tutorials and
user discussion board and
support 4

Figure 4: Various categories of open source

communities and websites.

109 OPEN CITIES: The New Post-Industrial World Order

RevitCity’s case, membership ranking also serves as a way of substantiating user
generated content. Membership ranking is a peer-reviewed system that not only
produces trust within a community, but also provides extrinsic motivation to
share, thereby increasing user content. This increase is evidenced by RevitCity’s
growth (based on interview conducted with Hiroshi Jacobs, founder of RevitCity.
com, on January 6th 2011).

Other online sources such as blogs and websites maintained by commercial train-
ing providers offer information of personal research and structured book con-
tent. In the case of commercial providers, free content previews are offered to
attract potential customers for additional offerings.

From an information consumer standpoint, these online sources can be brought
into the design and prototyping process in a number of ways: (1) tutorials, refer-
ences, guides, are useful to study the basics of the software interfaces and fun-
damentals of code or electronics to get started; (2) design-share communities
such as OpenProcessing.org or DIY communities such as Instructables are help-
ful to inspire users of the creative potential of the tools; (3) various forums are
generally useful for troubleshooting issues with code/algorithms and circuitry,
although when confronted with novel problems, the drawback is that specific
problems may not be resolved because of the lack of expertise in the user base or
difficulty of finding the expert (Ku and Grinham 2013); (4) code libraries are often
integrated and accessible from within the programming interface of the Arduino
and Processing but also available for download. These are generally helpful to
simplify coding processes such as the Servo library example described earlier
which simplifies the user coding of pulse width modulation to turn servo motors;
(5) material supplies offer shopping guides of hardware and link user feedback;
(6) open creative examples can also be customized by other users to building
upon other’s work.

OPEN SOURCE IN THE DESIGN STUDIO
In the context of the authors’ own design explorations and teaching of respon-
sive design studios, open source has proved to be helpful in various aspects. As
we discussed earlier, the design and prototyping of responsive architecture com-
prises at the core architectural design, interaction design, and physical comput-
ing. In the authors’ own early design explorations, the focus was on learning and
exploring relevant code and hardware applications for prototyping purposes.
Thus open source resources were primarily referenced for learning and applying
library objects. Subsequently, the lessons learned from these coding and hard-
ware prototyping experiences became the source for future studio teaching and
information sharing.

Our experience of teaching the responsive architecture studio to fifth year under-
graduate architecture students revealed the needs and benefits for expand-
ing open source practices. Particularly architecture students who are fairly well
equipped with foundations in architectural design, with some understanding of
interaction design, and some experience in parametric modeling and algorithmic
design commonly wish for more learning in coding. Some of the difficulties are
in understanding algorithmic logic; others are indicating the difficulty of compos-
ing more complex sequences that involve classes, simplification through looping,
and sub-procedures. The benefit of utilizing open source code is that sometimes
more complex code examples already exist and can be customized to fit the spe-
cific objectives of custom scenarios. But one of the challenges in such cases is

110Emergent Models of Architectural Education: Pedagogy, Curriculum + Students An Open-Source Paradigm

that it is not always easy to find similar code examples that can be appropriated.
Table 2 maps key activities involving open source content and skills. The activi-
ties in bold fonts indicate areas that facilitate skill building and help to improve
productivity and are usually more emphasized from the learning end. The areas
in italic fonts refer to skills that architectural students are generally prepared
with and proficient in and being able to share with others. Students are able to
design open systems of kinetic architectural interfaces that allow user input and
customization of the interaction schemes by future users. An interesting obser-
vation is that students manage well to explore opportunities for kinetic installa-
tions but may not necessarily connect the concepts of responsive interfaces with
smart system concepts.

DESIGNING AN OPEN DESIGN COMMUNITY PLATFORM
While we observed a large number of open source websites, the authors uti-
lized the University Blackboard courseware and University server for informa-
tion, data, document, code, and file sharing. The Blackboard site offered user

 Finding & Learning Using & Customizing Sharing
Coding instructions To be able to use and

develop basic and custom
algorithms for interactivity

To be able to find,
understand, use and
customize applied code
examples

Coding examples properly
formatted and annotated for
others to understand and use

Coding libraries To be able to find and
understand libraries that can
simplify operations or enable
new functions

Utilizing libraries to achieve
user specific program
objectives.
Customizing code libraries
requires somewhat
advanced skills and
knowledge (e.g., resolve
conflicts between libraries).
Regular user would not need
to have this ability

Share custom libraries that can
help others to achieve new
functions or simplify functions.
Regular user would not need to
have this ability

Kinetic mechanisms To be able to develop kinetic
mechanisms
Analyze kinetic behavior
based on mechanisms

To be able to apply kinetic
typologies or mechanisms

Instructions of kinetic construct
development process

Hardware To be able to identify,
specify, acquire and use off-
the-shelf hardware

Customizing/hacking
hardware

Instructions for sensors,
actuators, network applications
Circuit diagrams

Virtual prototyping/
Visualization software

To be able to use
Grasshopper/Firefly or
Processing for virtual
prototyping of interaction
scheme

To understand how to
interchange coding schemes
between different software
environments

Build 3D component library of
models for prototype assembly
diagrams

Digital fabrication To be able to use adequate
fabrication tools (e.g., laser
cutter, 3D printer, etc.)

 Document fabrication methods
and design documentation

Open design schemes Identify and analyze
precedents of interaction
schemes, kinetic constructs,
and smart spaces.

To be able to apply principles
of interactivity, kinetic
constructs and smart
systems to specific design
problems, or customize
existing interface or systems
to new problem contexts.

Develop interfaces instructions or
plug-and-play schemes that allow
code modifications or custom
interaction by users
Develop assembly systems that
can be replicated by users (DIY kit
instructions
Document, video record working
proof-of-concept prototypes

Figure 5: Open source activities in the responsive

architecture design studio.

5

111 OPEN CITIES: The New Post-Industrial World Order

content sharing via discussion boards for reading discussions, blogging for semi-
nar and research topic sharing. In parallel, a University server was used to post
and share presentations of ongoing design work, codes, digital models, and all
relevant design content. In addition, the students posted design progress work
in the format of videos and Prezi presentations on the Adobe Behance (http://
www.behance.net/) website (examples from the studio taught in spring 2014 can
be searched with the tag ‘arch508spring14). For content sharing and posting, the
authors may explore other open platforms such as Wikispaces in the future.

CONCLUSION
Within the responsive architectural studio the impact of open source is obvi-
ous and interwoven with design teaching and learning. The architecture stu-
dents exhibit strength on the information sharing end of developing open design
schemes, kinetic constructs and architectural interfaces. While in the areas of
coding and physical computing, some projects achieve interesting software and
hardware schemes; in general the architecture students indicate that they wish to
gain more in-depth knowledge of coding and electronics to feel more confident.
With the growing influence of open source in the design computing curriculum,
it is important to consider how to properly use and customize open source infor-
mation, and understand various licensing agreements such as Creative Commons.
Accordingly, it also needs to be established how to document, format and anno-
tate creative products for open sharing. At this stage our explorations on open
source have focused on fostering internal communities of practice within the
University’s design studio and we are looking for opportunities across colleges and
universities, and broadening the collaboration to open source communities.

ACKNOWLEDGEMENTS
This work was supported by a Nexus Grant from the Center for Teaching
Innovation & Nexus Learning (CTinL) at Philadelphia University. Its contents are
solely the responsibility of the authors and do not necessarily represent the offi-
cial views of CTinL.

ENDNOTES

Cheliotis, G. (2009) From open source to open content: Organization,
licensing and decision processes in open cultural production,
Decision Support Systems, 47, pp. 229–244, Elsevier.

Ceraso, A., and Pruchnic, J. (2011) Open source culture and asthetics,
Criticism, Summer 2011, Vol. 53, No. 3, pp. 407–438. Wayne
State University Press, Detroit, Michigan 48201-1309.

Fox, M. and Miles, K. (2009). Interactive Architecture. New York:
Princton Architectural Press.

Green, K. and Gross, M. (2012) Architectural robotics inevitably,
Interactions, Vol. XIX.1, January February 2012, Association for
Computing Machinery.

Ku, K. and Grinham, J. (2013) 4D Environments and Design:
Prototyping Interactive Architecture, ARCC News and Reports,
http://arccweb.org/newsletter/category/newsletters/37-1-
spring-2013/ (accessed March 10, 2014).

Haque, U. (2002) Hardspace, softspace and the possibilities of open
source architecture, http://www.haque.co.uk/papers/hardsp-
softsp-open-so-arch.PDF (accessed March 10, 2014).

Hope, J. (2008) Open Source Revolution in Biotechnology, Cambridge,
MA: Harvard University Press.

Jenkins, H., Purushotma, R., Clinton, K., Weigel, M. and Robison, A.J.
(2009) Confronting the Challenges of Participatory Culture:
Media Education for the 21st Century. Digital Media and
Learning. The MacArthur Foundation. http://mitpress.mit.edu/
sites/default/files/titles/free_download/9780262513623_
Confronting_the_Challenges.pdf (accessed March 10, 2014).

Lenhardt, A., and Madden, M. (2005) Teen Content Creators and
Consumers, Pew Internet & American Life Project, Washington,
DC.

McCullough, M. (2004) Digital Ground: Architecture, Pervasive
Computing, and Environmental Knowing, MIT Press.

Moloney, J. (2011) Designing kinetics for Architectural Facades: State
change, Routledge.

Ratti, C., Antonelli, P., Bly, A., Dietrich, L., Grima, J., Hill, D., Habraken,
J., Haw, A., Maeda, J., Negroponte, N., Obrist, H.U., Reas, C.,
Santambrogio, M., Shepard, M., Somajnl, C., and Sterling, B.
(2011) Open source architecture, op-ed, Domus 948.

Reas, C., & Fry, B. (2007). Processing: A Programing Handbook for
Visual Designers and Artists. Cambridge, MA: MIT Press.

Shirky, C. Cognitive Surplus. New York: Penguin, 2010.

Voyce, S. (2011) Toward an open source poetics: Appropriation,
collaboration, and the commons, Criticism, Summer 2011, Vol.
53, No. 3, pp. 337–375. Wayne State University Press, Detroit,
Michigan 48201-1309.

Zuk, W. (1970) Kinetic Architecture, Reinhold.

	An Open-Source Paradigm in theResponsive Architecture Studio

